M1.(a)
$$5s^2 4d^{10} 5p^4$$
 / $4d^{10} 5s^2 5p^4$
 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^4$
or $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^4$
Allow any order but must finish with $5p^4$

(b) (i)
$$\frac{(124 \times 2) + (126 \times 4) + (128 \times 7) + (130 \times 6)}{19}$$
 or $\frac{2428}{19}$

M1 for top line

<u>127.8</u>

M2 for correct denominator	1
127.8 with no working shown scores 3 marks	1

Or

	Mark for 100 dependent on top line correct	1
	<u>127.8</u>	1
(ii)	Other <u>isotopes</u> present / some <u>isotopes</u> absent / different abundances of <u>isotopes</u>	1
Te⁺	+ $e^{(-)}$ → Te Ignore state symbols Allow T e^{2+} + 2 $e^{(-)}$ → Te	1
128	Only	1
Mos	t abundant ion (QoL – superlative) M2 dependent on correct M1	

M2 dependent on correct M1

(C)

(d)

1

1

1

(e)	2+ ion formed / 2 electrons removed Due to $^{128}Te^{2+} = 2 marks$	1
	From ¹²⁸ (Te) <i>Mark independently</i>	1
(f)	Same If not same CE = 0 / 2	1
	(Each isotope has the) same number of protons / same nuclear charge <u>and</u> same number of electrons / electronic configuration Ignore more neutrons in ¹³⁰ Te	1 [12]
		[]
M2 .(a)	Abundance of third isotope = $100 - 91.0 - 1.8 = 7.2\%$	1
	$\frac{(32 \times 91) + (33 \times 1.8) + (y \times 7.2)}{100} = 32.16$	1
	7.2y = 32.16 × 100 – 32 × 91 – 33 × 1.8 = 244.6	1
	y = 244.6 / 7.2 = 33.97 y = 34	
	y – 34 Answer must be rounded to the nearest integer	1

(b) (for electrospray ionisation)

A high voltage is applied to a sample in a polar solvent	1	
the sample molecule, M, gains a proton forming MH^{*}	1	
OR		
(for electron impact ionisation)		
the sample is bombarded by high energy electrons	1	
the sample molecule loses an electron forming M^{\star}	_	
	1	
(c) Ions, not molecules, will interact with and be accelerated by an electric field	1	
Only ions will create a current when hitting the detector	1	[8]
M3 .D		[1]
M4.(a) (Total number of) protons and neutrons (in nucleus of atom) <i>(number of) nucleons</i>	1	
(b) Zn Do not allow Zn⁻¹ or Zn⁺¹ or ZN Ignore numbers	1	
(c) (i) P = ionise (sample) Allow removing an electron / forms (+) ions	1	
Page 4		

		Q = accelerate (sample) Allow speeds (ions) up Penalise molecules / atoms	1
	(ii)	<u>m / z</u> Allow mass / charge	1
		(relative) <u>abundance</u> / (relative) <u>intensity</u> QoL Allow M1 + M2 in any order	1
)	(i)	$\frac{206 + 207 + (208 \times 2)}{4} = \frac{(829)}{4}$ M1 = topline	1
		M2 = ÷ 4	1
		= <u>207.3</u> Only 207.3 = 3 marks	1
	(ii)	Lead / Pb Not PB	1

 (iii) <u>Same number</u> of electrons (in outer shell) / <u>same</u> electronic configuration *Ignore electrons determine chemical properties Ignore reference to p and n if correct Penalise if incorrect*

[11]

1

(d)

M5.(a) <u>Average / mean mass of 1 atom (of an element)</u> 1/12 mass of one atom of ¹²C *If moles and atoms mixed, max = 1*

1

Mark top and bottom line independently. All key terms must be present for each mark.

1

OR

Average / mean mass of atoms of an element 1/12 mass of one atom of ¹²C

OR

<u>Average / mean mass of atoms of an element ×12</u> mass of one atom of ¹²C

OR

(Average) mass of one mole of atoms 1/12 mass of one mole of ${}^{12}C$

OR

(Weighted) average mass of all the isotopes 1/12 mass of one atom of ¹²C

OR

Average mass of an atom / isotope (compared to C–12) on a scale in which an atom of C–12 has a mass of 12

This expression = 2 marks.

$$\frac{(70\times3)+(72\times4)+73+(74\times5)}{13} = \frac{941}{13}$$

(b)

= 72.4

72.4 only

1

(c) ⁽⁷²⁾<u>Ge⁺</u> or <u>germanium</u>⁺

Must show '+' sign. Penalise wrong mass number

(d) <u>70</u>

If M1 incorrect or blank CE = 0/2Ignore symbols and charge even if wrong.

Low<u>est</u> mass / low<u>est</u> m/z Accept light<u>est</u>. Accept few<u>est</u> neutrons.

(e) <u>Electron(s)</u> transferred / flow (at the detector)
 M1 must refer to electron flow at the detector.
 If M1 incorrect CE = 0/2

(From detector / plate) to the (+) ion Do not allow from a charged plate.

protons.

(f) They do not have the same electron configuration / they have different number of electrons (in the outer shell)
 Ignore electrons determine the properties of an atom.
 Ignore they are different elements or different number of

1 [11]

1

1

1

1

1

M6.(a) [CH₃OCOCOOH]⁺ Allow names

	[CH₃OCOCOOCH₃]⁺ Do not allow molecular formula	1	
(b)	Positive ions are accelerated by an electric field	1	
	To a constant kinetic energy	1	
	The positive ions with m / z of 104 have the same kinetic energy as those with m / z of 118 and move faster	1	
	Therefore, ions with m / z of 104 arrive at the detector first	1	[6]
1.673	4 × 10 ⁻²⁴ (g) Only. 1.6734 × 10 ⁻²⁷ <u>kg</u> Not 1.67 × 10 ⁻²⁴ (g).	1	
	(ii) B	1	
(b)	(i) $\frac{10x + 11y}{x + y} = 10.8$ OR ratio 10:11 = 1:4 OR 20:80 etc Allow idea that there are 5 × 0.2 divisions between 10 and 11.		

M7.(a) (i)

abundance of ¹⁰B is <u>20(%)</u> **OR** $\frac{10x}{100} + \frac{11(100-x)}{100} = 10.8$ 10x + 1100 - 11x = 1080 $\therefore x = 1100 - 1080 = 20\%$ *Correct answer scores M1 and M2.*

(ii) Same number of electrons (in outer shell or orbital) *Ignore electrons determine chemical properties.*

```
Same electronic configuration / arrangement 
Ignore protons unless wrong.
```

- (c) Range between 3500 and 10 000 kJ mol⁻¹
- (d) $B^{+}(g) \longrightarrow B^{2+}(g) + e^{(-)}$

 $\begin{array}{l} B^{*}(g) - e^{(-)} & \longrightarrow & B^{2*}(g) \\ B^{*}(g) + e^{(-)} & \longrightarrow & B^{2*}(g) + 2e^{(-)} \\ & Ignore \ state \ symbol \ on \ electron \ even \ if \ wrong. \end{array}$

(e) Electron being removed from a positive ion (therefore needs more energy) / electron being removed is closer to the nucleus

Must imply removal of an electron. Allow electron removed from a + particle / species or from a 2+ ion. Not electron removed from a higher / lower energy level / shell. Not electron removed from a higher energy sub-level / orbital. Ignore electron removed from a lower energy sub-level /

1

1

1

orbital.

Ignore 'more protons than electrons'. Not 'greater nuclear charge'. Ignore 'greater effective nuclear charge'. Ignore shielding.

[8]