M1.(a) $\quad 5 s^{2} 4 d^{10} 5 p^{4} \quad / \quad 4 d^{10} 5 s^{2} 5 p^{4}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{4}$ or $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{4}$
Allow any order but must finish with $5 p^{4}$
(b) (i)

M1 for top line
127.8

M2 for correct denominator
127.8 with no working shown scores 3 marks

Or

$$
\frac{(124 \times 10.5)+(126 \times 21.1)+(128 \times 36.8)+(130 \times 31.6)}{100}
$$

Mark for 100 dependent on top line correct
127.8
(ii) Other isotopes present / some isotopes absent / different abundances of isotopes
(c) $\mathrm{Te}^{+}+\mathrm{e}^{(-)} \rightarrow \mathrm{Te}$

Ignore state symbols
Allow $\mathrm{Te}^{2+}+2 \mathrm{e}^{(-)} \rightarrow \mathrm{Te}$
(d) 128

Only

Most abundant ion (QoL - superlative)
M2 dependent on correct M1
(e) $2+$ ion formed / 2 electrons removed

Due to ${ }^{128} \mathrm{Te}^{2+}=2$ marks
From ${ }^{128}$ (Te)
Mark independently
(f) Same

$$
\text { If not same } C E=0 / 2
$$

(Each isotope has the) same number of protons / same nuclear charge and same number of electrons / electronic configuration

Ignore more neutrons in ${ }^{130} \mathrm{Te}$

M2.(a) Abundance of third isotope $=100-91.0-1.8=7.2 \%$

$$
7.2 y=32.16 \times 100-32 \times 91-33 \times 1.8=244.6
$$

$$
\begin{aligned}
& y=244.6 / 7.2=33.97 \\
& y=34
\end{aligned}
$$

Answer must be rounded to the nearest integer
(b) (for electrospray ionisation)

A high voltage is applied to a sample in a polar solvent
the sample molecule, M , gains a proton forming MH^{+}

OR
(for electron impact ionisation)
the sample is bombarded by high energy electrons
the sample molecule loses an electron forming M^{+}
(c) lons, not molecules, will interact with and be accelerated by an electric field

Only ions will create a current when hitting the detector

M3.D

M4.(a) (Total number of) protons and neutrons (in nucleus of atom) (number of) nucleons
(b) Zn

Do not allow Zn^{-1} or Zn^{+1} or ZN
Ignore numbers
(c) (i) $\mathrm{P}=$ ionise (sample)

Allow removing an electron / forms (+) ions
Q = accelerate (sample)
Allow speeds (ions) up
Penalise molecules / atoms
(ii) m / z
Allow mass / charge
(relative) abundance / (relative) intensity
QoL
Allow M1 + M2 in any order
(d) (i) $\frac{206+207+(208 \times 2)}{4}=\frac{(829)}{4}$
M1 = topline
$M 2=\div 4$
$=\underline{207.3}$
Only
207.3 = 3 marks
(ii) Lead / Pb
Not PB
(iii) Same number of electrons (in outer shell) / same electronic configuration Ignore electrons determine chemical properties Ignore reference to p and n if correct
Penalise if incorrect

M5.(a) Average / mean mass of 1 atom (of an element)
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$
If moles and atoms mixed, $\max =1$

Mark top and bottom line independently.
All key terms must be present for each mark.

OR
Average / mean mass of atoms of an element $1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$

OR
Average / mean mass of atoms of an element $\times 12$ mass of one atom of ${ }^{12} \mathrm{C}$

OR
(Average) mass of one mole of atoms
$1 / 12$ mass of one mole of ${ }^{12} \mathrm{C}$
OR
(Weighted) average mass of all the isotopes
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$
OR
Average mass of an atom / isotope (compared to C-12) on a scale in which an atom of $\mathrm{C}-12$ has a mass of 12

This expression $=2$ marks.
(b)

$$
\frac{(70 \times 3)+(72 \times 4)+73+(74 \times 5)}{13}=\frac{941}{13}
$$

$=\underline{72.4}$
72.4 only
(c) ${ }^{(72)} \mathrm{Ge}^{+}$or germanium ${ }^{+}$

Must show '+' sign.
Penalise wrong mass number
(d) $\quad \underline{0}$

Lowest mass / lowest m/z

If M1 incorrect or blank CE $=0 / 2$
Ignore symbols and charge even if wrong.

Accept lightest.
Accept fewest neutrons.
(e) Electron(s) transferred / flow (at the detector)

M1 must refer to electron flow at the detector.
If M1 incorrect $C E=0 / 2$

Ignore electrons determine the properties of an atom.
Ignore they are different elements or different number of protons.
(f) They do not have the same electron configuration / they have different number of electrons (in the outer shell)
(From detector / plate) to the (+) ion
Do not allow from a charged plate.

M6.(a) $\left[\mathrm{CH}_{3} \mathrm{OCOCOOH}\right]^{+}$
Allow names

$\left[\mathrm{CH}_{3} \mathrm{OCOCOOCH} 3\right]^{+}$
 Do not allow molecular formula

(b) Positive ions are accelerated by an electric field

To a constant kinetic energy

The positive ions with m / z of 104 have the same kinetic energy as those with m / z of 118 and move faster

Therefore, ions with m / z of 104 arrive at the detector first

Only.
$1.6734 \times 10^{-27} \mathrm{~kg}$
Not $1.67 \times 10^{-24}(\mathrm{~g})$.
(ii) B
(b) (i) $\frac{10 x+11 y}{x+y}=10.8$

OR ratio 10:11 = 1:4 OR 20:80 etc
Allow idea that there are 5×0.2 divisions between 10 and 11.
abundance of ${ }^{10} \mathrm{~B}$ is $\underline{20}(\%)$
OR

$$
\begin{aligned}
& \frac{10 x}{100}+\frac{11(100-x)}{100}=10.8 \\
& 10 x+1100-11 \mathrm{x}=1080 \\
& \therefore \mathrm{x}=1100-1080=20 \%
\end{aligned}
$$

Correct answer scores M1 and M2.
(ii) Same number of electrons (in outer shell or orbital)

Ignore electrons determine chemical properties.
Same electronic configuration / arrangement
Ignore protons unless wrong.
(c) Range between 3500 and $10000 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $\mathrm{B}^{+}(\mathrm{g}) \longrightarrow \mathrm{B}^{2+}(\mathrm{g})+\mathrm{e}^{(-)}$
$\mathrm{B}^{+}(\mathrm{g})-\mathrm{e}^{(-)} \longrightarrow \mathrm{B}^{2+}(\mathrm{g})$
$\mathrm{B}^{+}(\mathrm{g})+\mathrm{e}^{(-)} \longrightarrow \mathrm{B}^{2+}(\mathrm{g})+2 \mathrm{e}^{(-)}$
Ignore state symbol on electron even if wrong.
(e) Electron being removed from a positive ion (therefore needs more energy) / electron being removed is closer to the nucleus

Must imply removal of an electron.
Allow electron removed from a + particle / species or from a 2+ ion.

Not electron removed from a higher / lower energy level / shell.
Not electron removed from a higher energy sub-level / orbital.
Ignore electron removed from a lower energy sub-level/
orbital.
Ignore 'more protons than electrons'.
Not 'greater nuclear charge'.
Ignore 'greater effective nuclear charge'.
Ignore shielding.

